E - Book

BSE DIKNAS, Buku Fiksi dan Nonfiksi

Bank Soal

UH, UAS, UAN, Olimpiade, UM SPMB & Test CPNS

E - Learning

Ilmu Pengetahuan Populer dan Teknologi Informasi
 
TERIMA KASIH TELAH MAMPIR KE BLOG INI.. UNTUK MENDOWNLOAD FILE SILAHKAN KLIK TEXT BERWARNA BIRU.. .

Grade 8 - Chapter 4 - SLETV/SPLDV Part 5

Nov 6, 2011

Systems of Linear Equation in Two Variables (SLETV)
Sistem Persamaan Linear Dua Variabel (SPLDV)

Standard of Competence :
2.  Understanding System of Linear Equation in Two variables and Using it in problem solving
Memahami SPLDV dan menggunakannya dalam pemecahan masalah

Basic Competence :
2.2 Solving the mathematics problem of problem which has something to do with SLETV  and its estimate.
Menyelesaikan masalah matematika dengan menggunakan Sistem Persamaan Linear Dua Variabel dan perkiraannya.


Learning Objective :
Students are able to determine the root of linear equations system by :
Siswa dapat menentukan penyelesaian dari sistem persamaan linear dengan menggunakan :
1.       Substitution
2.       Elimination
3.       Elimination and Substitution
4.       Graphic methods

Learning Materials :
Determining the root of  SLETV by :
Menentukan peyelesaian dari SPLDV dengan menggunakan :
1.       Substitution
2.       Elimination
3.       Elimination and Substitution
4.       Graphic methods


Resume Materials :
4.2. Solving SLETV
  1. Substitution Method
  2. Elimination Method
  3. Elimination and Subtitution Method
  4. Graph Method

4.      Graph Method
The Graph method solves by graphing the linear equations involved which is done by finding their X- intercept and Y- Intercept
Penyelesaian SPLDV dengan metode grafik adalah pada titik potong antara kedua garis
Example :
Find the solution to the system of equations consisting of x + y = 6 and 2x – y = 0
x + y = 6                                and                       2x – y = 0
X
0
6

X
0
1
Y
6
0

Y
0
2
(x , y)
(0, 6)
(6, 0)

(x, y)
(0, 0)
(1, 2)

.:. The solution  is given x = 2 and y = 4

Exercise :
Find the solution to each of the following systems of equations by Graphic Method
Tentukan penyelesaian sistem persamaan berikut dengan Metode Grafik
1.       x + 2y = 4 and y = -x
2.       x + y = 6 and x – y = 0
3.       3x + 2y – 12 = 0 and x + 2y = 4
4.       X + 3y = 6 and 2x + 6y – 12 = 0

Reference :
          Adinawan, Cholik. Sugiyono. 2009. Math for Junior High School 1st  Semester Grade VIII. Jakarta : Erlangga
          Agus, Nuniek Avianti, 2008. Mudah Belajar Matematika 2 Untuk Kelas VIII SMP/MTs. Jakarta : BSE Departemen Pendidikan Nasional
          Dirgen Management of Primary and Scondary Education . 2009. Mathematics Grade VIII Junior High School.  Jakarta : Directorate of Junior High School Development
          Nuharini, Dewi. Tri Wahyuni. 2008. Matematika Konsep dan Aplikasinya Untuk Kelas VIII SMP dan MTs. Jakarta : BSE Departemen Pendidikan Nasional
          Nugroho,Heru. Lisda Maesaroh. 2009. Matematika SMP  dan MTs Kelas VIII . Jakarta : BSE Departemen Pendidikan Nasional

If you copy this file to your website please include a link www.mathematriks.co.cc on your website, thank you
Jika mengcopy file ini ke website anda silahkan cantumkan link www.mathematriks.co.cc di website anda , terima kasih
-== Sky Boy ==-                 



Related Posts [ Jangan lupa berkomentar ea.. ]



0 Comments:

Post a Comment